
Dominance Product and High-Dimensional
Closest Pair under L∞

∗

Omer Gold1 and Micha Sharir2

1 Blavatnik School of Computer Science, Tel Aviv University,
Tel Aviv 69978, Israel
omergold@post.tau.ac.il

2 Blavatnik School of Computer Science, Tel Aviv University,
Tel Aviv 69978, Israel
michas@post.tau.ac.il

Abstract
Given a set S of n points in Rd, the Closest Pair problem is to find a pair of distinct points in S
at minimum distance. When d is constant, there are efficient algorithms that solve this problem,
and fast approximate solutions for general d. However, obtaining an exact solution in very high
dimensions seems to be much less understood. We consider the high-dimensional L∞ Closest Pair
problem, where d = nr for some r > 0, and the underlying metric is L∞.

We improve and simplify previous results for L∞ Closest Pair, showing that it can be solved
by a deterministic strongly-polynomial algorithm that runs in O(DP (n, d) logn) time, and by
a randomized algorithm that runs in O(DP (n, d)) expected time, where DP (n, d) is the time
bound for computing the dominance product for n points in Rd. That is a matrix D, such
that D[i, j] =

∣∣{k | pi[k] ≤ pj [k]}
∣∣; this is the number of coordinates at which pj dominates

pi. For integer coordinates from some interval [−M,M], we obtain an algorithm that runs in
Õ
(
min{Mnω(1,r,1), DP (n, d)}

)
time1, where ω(1, r, 1) is the exponent of multiplying an n× nr

matrix by an nr × n matrix.
We also give slightly better bounds for DP (n, d), by using more recent rectangular matrix

multiplication bounds. Computing the dominance product itself is an important task, since it is
applied in many algorithms as a major black-box ingredient, such as algorithms for APBP (all
pairs bottleneck paths), and variants of APSP (all pairs shortest paths).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Closest Pair, Dominance Product, L∞ Proximity

Digital Object Identifier 10.4230/LIPIcs...1

1 Introduction

Finding the closest pair among a set of n points in Rd was among the first studied algorithmic
geometric problems, considered at the origins of computational geometry; see [20, 18]. The
distance between pairs of points is often measured by the Lτ metric, for some 1 ≤ τ ≤ ∞,
under which the distance between the points pi = (pi[1], . . . , pi[d]) and pj = (pj [1], . . . , pj [d])

∗ Work on this paper has been supported by Grant 892/13 from the Israel Science Foundation, by
Grant 2012/229 from the U.S.-Israeli Binational Science Foundation, by the Israeli Centers of Research
Excellence (I-CORE) program (Center No. 4/11), and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University.

1 The Õ(·) notation hides poly-logarithmic factors.

© Omer Gold and Micha Sharir;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Dominance Product and High-Dimensional Closest Pair under L∞

is distτ (pi, pj) = ‖pi − pj‖τ =
(∑d

k=1
∣∣pi[k]− pj [k]

∣∣τ)1/τ
, for τ < ∞, and dist∞(pi, pj) =

‖pi−pj‖∞ = maxk
∣∣pi[k]− pj [k]

∣∣, for τ =∞. The Closest Pair problem and its corresponding
decision variant, under the Lτ -metric, are defined as follows.

Closest Pair: Given a set S of n points in Rd, find a pair of distinct points pi, pj ∈ S
such that distτ (pi, pj) = min` 6=m{distτ (p`, pm) | p`, pm ∈ S}.

Closest Pair Decision: Given a set S of n points in Rd, and a parameter δ > 0, determine
whether there is a pair of distinct points pi, pj ∈ S such that distτ (pi, pj) ≤ δ.

Throughout the paper, the notation Lτ Closest Pair refers to the Closest Pair problem under
some specific metric Lτ , for 1 ≤ τ ≤ ∞ (and we will mostly consider the case τ =∞).

In the algebraic computation tree model (see [3]), the Closest Pair problem has a complexity
lower bound of Ω(n logn) (for any Lτ metric), even for the one-dimensional case d = 1, as
implied from a lower bound for the Element-Uniqueness problem [3].

As for upper bounds, Bentley and Shamos [5, 4] were the first who gave a deterministic
algorithm for finding the closest pair under the L2 metric that runs in O(n logn) time for any
constant dimension d ≥ 1, which is optimal in the algebraic computation tree model, for any
fixed d. Their algorithm uses the divide-and-conquer paradigm, and became since, a classical
textbook example for this technique. In 1976 Rabin presented, in a seminal paper [19],
a randomized algorithm that finds the closest pair in O(n) expected time, using the floor
function (which is not included in the algebraic computation tree model). His algorithm uses
random sampling to decompose the problem into smaller subproblems, and uses the floor
function in solving them, for a total cost of O(n) expected time. Later, in 1979, Fortune
and Hopcroft [9] gave a deterministic algorithm that uses the floor function, and runs in
O(n log logn) time.

The bounds above hold as long as the dimension d is constant, as they involve factors
that are exponential in d. Thus, when d is large (e.g., d = n), the problem seems to be
much less understood. Shamos and Bentley [5] conjectured in 1976 that, for d = n, and
under the L2 metric, the problem can be solved in O(n2 logn) time; so far, their conjectured
bound is considerably far from the O(nω) state-of-the-art time bound for this case [13], where
ω < 2.373 denotes the exponent for matrix multiplication (see below). If one settles on
approximate solutions, many efficient algorithms were developed in the last two decades,
mostly based on LSH (locality sensitive hashing) schemes, and dimensionality reduction
via the Johnson-Lindenstrauss transform; see [2, 1] for examples of such algorithms. These
algorithms are often used for finding approximate nearest neighbors, which itself is of major
importance and in massive use in many practical fields of computer science. Nevertheless,
finding an exact solution seems to be a much harder task.

We consider the case where d depends on n, i.e., d = nr for some r > 0. Note that a
naive brute-force algorithm runs in O(n2d) time and works for any metric Lτ . For some Lτ
metrics, a much faster solution is known; see [13]. Specifically, the L2 Closest Pair problem
can be solved by one algebraic matrix multiplication, so for example when d = n, it can be
solved in O(nω) time (as already mentioned above). If τ ≥ 2 is an even integer, then Lτ
Closest Pair can be solved in O(τnω) time. However, for other Lτ metrics, such as when τ is
odd (or fractional), or the L∞ metric, the known solutions are significantly inferior.

For the L1 and L∞ metrics, Indyk et al. [13] obtained the first (and best known until
now) non-naive algorithms for the case d = n. For L1, they gave an algorithm that runs in
O
(
n
ω+3

2

)
= O(n2.687) time, and for L∞, one that runs in O

(
n
ω+3

2 logD
)

= O(n2.687 logD)
time, where D is the diameter of the given point-set. The bound for L∞ is weakly polynomial,

O. Gold and M. Sharir 1:3

due to the dependence on D, and, for real data, only yields an approximation. Their paper
is perhaps the most related to our work.

Our new approach is based on two main observations. The first is showing a reduction
from L∞ Closest Pair Decision to another well-studied problem, dominance product. The
second is by showing we can solve the optimization problem deterministically by executing
the decision procedure only O(logn) times.

We also give improved runtime analysis for the dominance product problem, defined as
follows.

Dominance Product: given a set S of n points p1, . . . , pn in Rd, compute a matrix D
such that for each i, j ∈ [n], D[i, j] =

∣∣∣{k | pi[k] ≤ pj [k]}
∣∣∣.

This matrix is called the dominance product or dominance matrix for S. For d = n, there is
a non-trivial strongly subcubic algorithm by Matoušek [17] (see Section 4), and a slightly
improved one by Yuster [23]. For d ≤ n, there are extensions of Matoušek’s algorithm by
Vassilevska-Williams, Williams, and Yuster [21]. All of them use fast matrix multiplications.

Dominance product computations were liberally used to improve some fundamental
algorithmic problems. For example, Vassilevska-Williams, Williams, and Yuster [21], give the
first strongly subcubic algorithm for the all pairs bottleneck paths (APBP) problem, using
dominance product computations. Duan and Pettie [8] later improved their algorithm, also
by using dominance product computations, in fact, their time bound for (max, min)-product
match the current time bound of computing the dominance product of n points in Rn.
Yuster [23] showed that APSP can be solved in strongly subcubic time if the number of
distinct weights of edges emanating from any fixed vertex is O(n0.338). In his algorithm, he
uses dominance product computation as a black box.

1.1 Preliminaries
We review some notations that we will use throughout the paper. We denote by [N] =
{1, . . . , dNe}, the set of the first dNe natural numbers succeeding zero, for any N ∈ R+. For
a point p ∈ Rd, we denote by p[k] the k-th coordinate of p, for k ∈ [d]. For a matrix A, we
denote the transpose of A by AT . The Õ(·) notation hides poly-logarithmic factors.

Most of the algorithms discussed in this paper heavily rely on fast matrix multiplication
algorithms. Throughout the paper, ω < 2.373 denotes the exponent of multiplying two n× n
matrices [22, 14], and ω(1, r, 1) refers to the exponent of multiplying an n× nr matrix by
an nr × n matrix, for some r > 0; see [12, 15]. For more details on rectangular matrix
multiplication exponents, we refer the reader to the seminal work of Huang and Pan [12],
and to a more recent work of Le Gall [15, 16].

1.2 Our Results
Let DP (n, d) denote the runtime order for computing the dominance product (defined above)
of n points in Rd. We obtain the following results for the L∞ Closest Pair problem in Rd,
where d = nr, for some r > 0.

I Theorem 1. L∞ Closest Pair can be solved by a deterministic algorithm that runs in
O(DP (n, d) logn) time.

Theorem 1 improves the O(n2.687 logD) time bound of Indyk et al. [13] (see above) in two
aspects, first is that the polynomial factor n2.687 goes slightly down to DP (n, n) = n2.684,
which we then improve further to n2.6598 in Theorem 4; this holds also for Theorem 2, stated

1:4 Dominance Product and High-Dimensional Closest Pair under L∞

below. The second aspect is that the logD factor is replaced by a logn factor, which makes
our algorithm strongly-polynomial, independent of the diameter of the given point-set.

For the proof of Theorem 1, we first show a reduction from L∞ Closest Pair Decision
to dominance product computation, then we show that the optimization problem can be
cleverly solved deterministically by executing the decision procedure only O(logn) times.

I Theorem 2. L∞ Closest Pair can be solved by a randomized algorithm that runs in
O(DP (n, d)) expected time.

I Theorem 3. For points with integer coordinates from [−M,M], L∞ Closest Pair can be
solved by a deterministic algorithm that runs in Õ

(
min{Mnω(1,r,1), DP (n, d)}

)
time.

From Theorem 3 we obtain that for n points in Rn with small integer coordinates we can
solve the optimization problem in O(nω) time, which is a significant improvement compared
to the general case from Theorems 1 and 2.

Additionally, in Theorem 4 we give improved bounds for DP (n, d).

I Theorem 4. given a set S of n points p1, . . . , pn in Rd, their dominance product can be
computed in O(DP (n, d)) time, where

DP (n, d) ≤

d0.697n1.896 + n2+o(1) if d ≤ nω−1

2 ≤ n0.687

d0.909n1.75 if n0.687 ≤ d ≤ n0.87

d0.921n1.739 if n0.87 ≤ d ≤ n0.963

d0.931n1.73 if n0.963 ≤ d ≤ n1.056

In particular, we obtain that DP (n, n) = n2.6598, which improves Yuster’s O(n2.684) time
bound. As mentioned above, these bounds will slightly improve the time bounds for algorithms
that use dominance product computation as a bottleneck step (see some examples above).
In the rest of the paper we will often refer to the function DP (n, d) above.

2 L∞ Closest Pair

Recall that, given a set S of n points p1, . . . , pn in Rd, the L∞ Closest Pair problem is to
find a pair of points (pi, pj), such that i 6= j and ‖pi − pj‖∞ = min` 6=m∈[n] ‖p` − pm‖∞. The
corresponding decision version of this problem is to determine whether there is a pair of
distinct points (pi, pj) such that ‖pi − pj‖∞ ≤ δ, for a given δ > 0.

Naively, we can compute all the distances between every pair of points in O(n2d) time,
and choose the smallest one. However, as we see next, a significant improvement can be
achieved, for any d = nr, for any r > 0.

Specifically, we first obtain the following theorem.

I Theorem 5. Given a parameter δ > 0, and a set S of n points p1, . . . , pn in Rd, the set of
all pairs (pi, pj) with ‖pi − pj‖∞ ≤ δ, can be computed in O(DP (n, d)) time.

Proof. First, we note the following trivial but useful observation.
I Observation 6. For a pair of points pi, pj ∈ Rd, ‖pi − pj‖∞ ≤ δ ⇐⇒ pi[k] ≤ pj [k] + δ and
pj [k] ≤ pi[k] + δ, for every coordinate k ∈ [d].

Indeed, a pair of points (pi, pj) satisfies ‖pi − pj‖∞ = maxk∈[d] |pi[k]− pj [k]| ≤ δ ⇐⇒
for every coordinate k ∈ [d], |pi[k]− pj [k]| ≤ δ. The last inequalities hold iff pi[k]− pj [k] ≤ δ
and pj [k] − pi[k] ≤ δ, or, equivalently, iff pi[k] ≤ pj [k] + δ and pj [k] ≤ pi[k] + δ, for each

O. Gold and M. Sharir 1:5

k ∈ [d]. Although the rephrasing in the observation is trivial, it is crucial for our next step.
It can be regarded as a (simple) variant of what is usually referred to as “Fredman’s trick"
(see [11]).

For every i ∈ [n] we create a new point pn+i = pi + (δ, δ, . . . , δ). Thus in total, we now
have 2n points. Concretely, for every i ∈ [n], we have the points

pi =
(

pi[1], pi[2], . . . , pi[d]
)
,

pn+i =
(

pi[1] + δ, pi[2] + δ, . . . , pi[d] + δ
)
.

We compute the dominance matrix Dδ for these 2n points, using the algorithm from
Section 4.1. By Observation 6, a pair of points (pi, pj) satisfies

‖pi − pj‖∞ ≤ δ ⇐⇒ (Dδ[i, n+ j] = d) ∧ (Dδ[j, n+ i] = d) ,

so we can find all these pairs in O(n2) additional time. Clearly, the runtime is determined
by the time bound of computing the dominance matrix Dδ, that is, O(DP (n, d)). J

The proof of Theorem 5 shows that solving the L∞ Closest Pair Decision is not harder
than computing the dominance matrix for n points in Rd. In particular, by the decision tree
complexity bound for computing dominance matrices, as discussed in Section 4, the following
result is straightforward.

I Corollary 7. Given a parameter δ > 0, and a set S of n points p1, . . . , pn in Rd, determining
all pairs i 6= j such that ‖pi − pj‖∞ ≤ δ can be done using O(dn logn) pairwise comparisons
(of real numbers).

By Corollary 7, we obtain that the 2-linear decision tree complexity for the L∞ Closest Pair
Decision problem is O(dn logn). This bound matches a special case of an old conjectured
algorithmic complexity bound by Shamos and Bentley (see Section 1, and [5]).

2.1 Solving the Optimization Problem
The algorithm from Theorem 5 solves the L∞ Closest Pair Decision problem. It actually gives
a stronger result, as it finds all pairs of points (pi, pj) such that ‖pi − pj‖∞ ≤ δ. We use this
algorithm in order to solve the optimization problem L∞ Closest Pair.

As a “quick and dirty" solution, one can solve the optimization problem by using the
algorithm from Theorem 5 to guide a binary search over the diameter W of the input point
set, which is at most twice the largest absolute value of the coordinates of the input points. If
the coordinates are integers then we need to invoke the algorithm from Theorem 5 O(logW)
times. If the coordinates are reals, we invoke it O(B) times for B bits of precision. However,
the dependence onW makes this method weakly polynomial, and, for real data, only yields an
approximation. As we show next, this naive approach can be replaced by strongly-polynomial
algorithms, A deterministic one that runs in O(DP (n, d) logn) time, and a randomized one
that runs in O(DP (n, d)) expected time.

Deterministic strongly-polynomial algorithm.

I Theorem 8. Given a set S of n points p1, . . . , pn in Rd, the L∞ Closest Pair problem can
be solved for S in O(DP (n, d) logn) time.

Proof. Since the distance between the closest pair of points, say pi, pj , is

δ0 = ‖pi − pj‖∞ = max
k∈[d]

∣∣pi[k]− pj [k]
∣∣,

1:6 Dominance Product and High-Dimensional Closest Pair under L∞

it is one of the O(n2d) values p`[k]−pm[k], `,m ∈ [n], k ∈ [d]. Our goal is to somehow search
through these values, using the decision procedure (i.e., the algorithm from Theorem 5).
However, enumerating all these values takes Ω(n2d) time, which is too expensive, and
pointless anyway, since by having them, the closest pair can be found immediately. Instead,
we proceed in the following more efficient manner.

For each k ∈ [d], we sort the points of S in increasing order of their k-th coordinate. This
takes O(nd logn) time in total. Let

(
p

(k)
1 , . . . , p

(k)
n

)
denote the sequence of the points of S

sorted in increasing order of their k-th coordinate. For each k, let M (k) be an n× n matrix,
so that for i, j ∈ [n], we have

M (k)[i, j] = p
(k)
i [k]− p(k)

j [k].

We are in fact interested only in the upper triangular portion of M (k), where its elements are
positive, but for simplicity of presentation, we ignore this issue. (We view the row indices
from bottom to top, i.e., the first row is the bottommost one, and the column indices from
left to right.)

Observe that each row of M (k) is sorted in decreasing order and each column is sorted
in increasing order. Under these conditions, the selection algorithm of Frederickson and
Johnson [10] can find the t-largest element of M (k), for any 1 ≤ t ≤ n2, in O(n) time.2 (Note
that we do not need to explicitly construct the matrices M (k), this will be too expensive. The
bound of Frederickson-Johnson’s algorithm holds as long as each entry of M (k) is accessible
in O(1) time, like in our case.)

We use this method to conduct a simultaneous binary search over all d matrices M (k) to
find δ0. At each step of the search we maintain two counters Lk ≤ Hk, for each k. Initially
Lk = 1 and Hk = n2. The invariant that we maintain is that, at each step, δ0 lies in between
the Lk-th and the Hk-th largest elements of M (k), for each k.

Each binary search step is performed as follows. We compute rk = b(Lk +Hk)/2c, for
each k, and apply the Frederickson-Johnson algorithm to retrieve the rk-th largest element
of M (k), which we denote as δk, in total time O(nd). We give δk the weight Hk − Lk + 1,
and compute the weighted median δmed of {δ1, . . . , δd}. We run the L∞ Closest Pair Decision
procedure of Theorem 5 on δmed. Suppose that it determines that δ0 ≤ δmed. Then for each
k for which δk ≥ δmed we know that δ0 ≤ δk, so we set Hk := rk and leave Lk unchanged.
Symmetric actions are taken if δ0 > δmed. In either case, we remove roughly one quarter
of the candidate differences; that is, the sum

∑
k∈[d] (Hk − Lk + 1) decreases by roughly a

factor of 3/4. Hence, after O(logn) steps, the sum becomes O(d), and a straightforward
binary search through the remaining values finds δ0. The overall running time is

O(nd logn+DP (n, d)(logn+ log d)).

Since in our setting d is polynomial in n, and nd � DP (n, d), we obtain that the overall
runtime is O(DP (n, d) logn). This completes the proof of Theorem 1. J

Randomized algorithm. Using randomization, we can improve the time bound of the
preceding deterministic algorithm to equal the time bound of computing the dominance
product O(DP (n, d)) in expectation. This can be done by using a randomized optimization
technique by Chan [6]. Among the problems for which this technique can be applied, Chan
specifically addresses the Closest Pair problem.

2 Simpler algorithms can select the t-largest element in such cases in O(n logn) time, which is also
sufficient for our approach.

O. Gold and M. Sharir 1:7

I Theorem 9 (Chan [6]). Let U be a collection of objects. If the Closest Pair Decision problem
can be solved in O(T (n)) time, for an arbitrary distance function d : U × U → R, then
the Closest Pair problem can be solved in O(T (n)) expected time, assuming that T (n)/n is
monotone increasing.

We refer the reader to [6], for the proof of Theorem 9. By Theorem 5, L∞ Closest Pair
Decision can be solved in O(DP (n, d)) time. Clearly, DP (n, d)/n is monotone increasing in
n. Hence, by Theorem 9, we obtain a randomized algorithm for L∞ Closest Pair that runs in
O(DP (n, d)) expected time, as stated in Theorem 2.

3 L∞ Closest Pair with Integer Coordinates

A considerable part of the algorithm from the previous section is the reduction to computing
a suitable dominance matrix. The algorithms for computing dominance matrices given in
Section 4 do not make any assumptions on the coordinates of the points, and support real
numbers. When the coordinates are bounded integers, we can improve the algorithms. In
particular, for n points in Rn with small integer coordinates we can solve the optimization
problem in O(nω) time, which is a significant improvement compared to the O(n2.6598) time
bound of our previous algorithm for this case3. Our improvement is based on techniques for
computing (min,+)-matrix multiplication over integer-valued matrices.

I Theorem 10. Let S be a set of n points p1, . . . , pn in Rd such that d = nr for some r > 0,
and for all i ∈ [n], k ∈ [d], pi[k] is an integer in [−M,M]. Then the L∞ closest pair can be
computed in

Õ
(

min
{
Mnω(1,r,1), DP (n, d)

})
time.

We first define (max,+)-product and (min,+)-product over matrices.

I Definition 11 (Distance products of matrices). Let A be an n ×m matrix and B be an
m× n matrix. The (max,+)-product of A and B, denoted by A ? B, is the n× n matrix C
whose elements are given by

cij = max
1≤k≤m

{aik + bkj}, for i, j ∈ [n].

Similarly, the (min,+)-product of A and B denoted by A ∗B is the n× n matrix C ′ whose
elements are given by

c′ij = min
1≤k≤m

{aik + bkj}, for i, j ∈ [n].

We refer to either of the (min,+)-product or the (max,+)-product as a distance product.

The distance product of an n×m matrix by an m× n matrix can be computed naively
in O(n2m) time. When m = n, the problem is equivalent to APSP (all pairs shortest paths)
problem in a directed graph with real edge weights, and the fastest algorithm known is a
recent one by Chan and Williams [7] that runs in O

(
n3/2

√
Ω(logn)

)
time. It is a prominent

long-standing open problem whether a truly subcubic algorithm for this problem exists.
However, when the entries of the matrices are integers, we can convert distance products of
matrices into standard algebraic products. We use a technique by Zwick [24].

3 For integer coordinates that are bounded by a constant, the L∞-diameter of the points is also a constant
(bounded by twice the largest coordinate), hence, one can use the decision procedure to (naively) guide
a binary search over the diameter in constant time.

1:8 Dominance Product and High-Dimensional Closest Pair under L∞

I Lemma 12 (Zwick [24]). Given an n×m matrix A = {aij} and an m×n matrix B = {bij}
such that m = nr for some r > 0, and all the elements of both matrices are integers from
[−M,M], their (min,+)-product C = A ∗B can be computed in Õ(Mnω(1,r,1)) time.

With minor appropriate modifications, the (max,+)-product of matrices A and B can be
computed within the same time as in Lemma 12.

We now give an algorithm for computing all-pairs L∞ distances, by using the fast
algorithm for computing (max,+)-product over bounded integers.

I Lemma 13. Let S be a set of n points p1, . . . , pn in Rd such that d = nr for some r > 0,
and for all i ∈ [n], pi[k] is an integer from the interval [−M,M], for all k ∈ [d]. Then the
L∞ distances between all pairs of points (pi, pj) from S can be computed in Õ(Mnω(1,r,1))
time.

Proof. We create the n × d matrix A = {aik} and the d × n matrix B = (−A)T = {bki},
where

aik = pi[k], for i ∈ [n], k ∈ [d]

bki = −pi[k], for i ∈ [n], k ∈ [d].

Now we compute the (max,+)-product C = A?B. The matrix L of all-pairs L∞-distances
is then easily seen to be

L[i, j] = max
{
C[i, j], C[j, i]

}
= ‖pi − pj‖∞ ,

for every pair i, j ∈ [n].
Clearly, the runtime is determined by computing the (max,+)-product C = A ? B. This

is done as explained earlier, and achieves the required running time. J

Consequently, by taking the minimum from the algorithm above, and the (say, determ-
inistic) algorithm from Section 2, we obtain that for points in Rd with integer coordinates
from [−M,M], where d = nr for some r > 0, we can find the L∞ closest pair in

Õ
(

min
{
Mnω(1,r,1), DP (n, d)

})
time,

as stated in Theorem 3.

4 Dominance Products

We recall the dominance product problem: given n points p1, . . . , pn in Rd, we want to
compute a matrix D such that for each i, j ∈ [n],

D[i, j] =
∣∣∣{k | pi[k] ≤ pj [k]}

∣∣∣.
It is easy to see that the matrix D can be computed naively in O(dn2) time. Note that, in
terms of decision tree complexity, it is straightforward to show that O(dn logn) pairwise
comparisons suffice for computing the dominance product of n points in Rd. However, the
actual best known time bound to solve this problem is significantly larger than its decision
tree complexity bound.

The first who gave a truly subcubic algorithm to compute the dominance product of n
points in Rn is Matoušek [17]. We first outline his algorithm, and then present our extension
and improved runtime analysis.

O. Gold and M. Sharir 1:9

I Theorem 14 (Matoušek [17]). Given a set S of n points in Rn, the dominance matrix for
S can be computed in O(n 3+ω

2) = O(n2.687) time.

Proof. For each j ∈ [n], sort the n points by their j-th coordinate. This takes a total of
O(n2 logn) time. Define the j-th rank of point pi, denoted as rj(pi), to be the position of pi
in the sorted list for coordinate j. Let s ∈ [logn, n] be a parameter to be determined later.
Define n/s pairs (assuming for simplicity that n/s is an integer) of n× n Boolean matrices
(A1, B1), . . . , (An/s, Bn/s) as follows:

Ak[i, j] =
{

1 if rj(pi) ∈ [ks, ks+ s)
0 otherwise,

Bk[i, j] =
{

1 if rj(pi) ≥ ks+ s

0 otherwise,

for i, j ∈ [n]. Put Ck = Ak ·BTk . Then Ck[i, j] equals the number of coordinates t such that
rt(pi) ∈ [ks, ks+ s), and rt(pj) ≥ ks+ s.

Thus, by letting C =
∑n/s
k=1 Ck, we have that C[i, j] is the number of coordinates t such

that pi[t] ≤ pj [t] and brt(pi)/sc < brt(pj)/sc.
Next, we compute a matrix E such that E[i, j] is the number of coordinates t such that

pi[t] ≤ pj [t] and brt(pi)/sc = brt(pj)/sc. Then D := C +E is the desired dominance matrix.
To compute E, we use the n sorted lists we computed earlier. For each pair (i, j) ∈ [n]×[n],

we retrieve q := rj(pi). By reading off the adjacent points that precede pi in the j-th sorted
list in reverse order (i.e., the points at positions q − 1, q − 2, etc.), and stopping as soon as
we reach a point pk such that brj(pk)/sc < brj(pi)/sc, we obtain the list pi1 , . . . , pil of l ≤ s
points such that pix [j] ≤ pi[j] and brj(pi)/sc = brj(pix)/sc. For each x = 1, . . . , l, we add a
1 to E[ix, i]. Assuming constant time lookups and constant time probes into a matrix (as is
standard in the real RAM model), this entire process takes only O(n2s) time. The runtime
of the above procedure is therefore O(n2s+ n

s · n
ω). Choosing s = n

ω−1
2 , the time bound

becomes O(n 3+ω
2). J

Yuster [23] has slightly improved this algorithm to run in O(n2.684) time, by using
rectangular matrix multiplication.

4.1 Generalized and Improved Bounds
We extend Yuster’s idea to obtain bounds for dimension d = nr, for the entire range
r > 0, and, at the same time, give an improved time analysis, using the recent bounds for
rectangular matrix multiplications of Le Gall [15, 16] coupled with an interpolation technique.
This analysis is not trivial, as Le Gall’s bounds for ω(1, r, 1) are obtained by a nonlinear
optimization problem, and are only provided for a few selected values of r (see Table 1 in [16]
and [15]). Combining Le Gall’s exponents with an interpolation technique, similar to the one
used by Huang and Pan [12], we obtain improved bounds for all values d = nr, for any r > 0.

Note that the matrices Ak and Bk, defined above, are now n × d matrices. Thus, the
sum C defined earlier, can be viewed as a product of block matrices

C =
[
A1 A2 · · · An/s

]
·

BT1

BT2
...

BTn/s

 .
Thus, to compute C we need to multiply an n × (dn/s) matrix by a (dn/s) × n matrix.
Computing E in this case can be done exactly as in Matoušek’s algorithm, in O(nds) time.

1:10 Dominance Product and High-Dimensional Closest Pair under L∞

r ω ζ

r0 = 1.0 ω0 = 2.372864 ζ0 = 0.6865
r1 = 1.1 ω1 = 2.456151 ζ1 = 0.7781
r2 = 1.2 ω2 = 2.539392 ζ2 = 0.8697
r3 = 1.3 ω3 = 2.624703 ζ3 = 0.9624
r4 = 1.4 ω4 = 2.711707 ζ4 = 1.0559

Table 1 The relevant entries from Le Gall’s table. The dominance product can be computed in
O(nωi) time, for dimension di = nζi .

Consider first the case where d is small; concretely, d ≤ nω−1
2 . In this case we compute C

using the following result by Huang and Pan.

I Lemma 15 (Huang and Pan [12]). Let α = sup
{

0 ≤ r ≤ 1 | w(1, r, 1) = 2 + o(1)
}
. Then

for all nα ≤ m ≤ n, one can multiply an n × m matrix with an m × n matrix in time
O
(
m

ω−2
1−αn

2−ωα
1−α

)
.

Huang and Pan [12] showed that α > 0.294. Recently, Le Gall [15, 16] improved the bound
on α to α > 0.302. By plugging this into Lemma 15, we obtain that multiplying an n×m
matrix with an m× n matrix, where nα ≤ m ≤ n, can be done in time O(m0.535n1.839).

From the above, computing C and E can be done in O
(
(dn/s)0.535n1.839 + dns

)
time.

By choosing s = n0.896/d0.303, the runtime is asymptotically minimized, and we obtain the
time bound O(d0.697n1.896). This time bound holds only when nα < n0.302 ≤ dn/s ≤ n,
which yields the time bound

O(d0.697n1.896 + n2+o(1)), for d ≤ n(ω−1)/2 ≤ n0.687.

We now handle the case d > n(ω−1)/2. Note that in this case, dn/s > n (for s as above),
thus, we cannot use the bound from Lemma 15. Le Gall [15, 16] gives a table (Table 1
in [16] and [15]) of values r (he refers to them as k), including values of r > 1 (which is
what we need), with various respective exponents ω(1, r, 1). We will confine ourselves to
the given bounds for the values r1 = 1.1, r2 = 1.2, r3 = 1.3, and r4 = 1.4. We denote their
corresponding exponents ω(1, ri, 1) by ω1 ≤ 2.456151, ω2 ≤ 2.539392, ω3 ≤ 2.624703, and
ω4 ≤ 2.711707 respectively. The exponent for r0 = 1 is ω0 = ω ≤ 2.372864 (see [22, 14]).

The algorithm consists of two parts. For a parameter s, that we will fix shortly, the
cost of computing C = A · BT is O (nωr), where ωr is a shorthand notation for ω(1, r, 1),
and where nr = dn/s, and the cost of computing E is O(nds) = O

(
s2nr

)
. Dropping the

constants of proportionality, and equating the two expressions, we choose

s = n(ωr−r)/2, that is, d = snr−1 = n(ωr+r)/2−1 = nζr ,

for ζr = (ωr + r)/2− 1. Put ζi = ζri , for the values r0, . . . , r4 mentioned earlier; see Table 1.
Now if we are lucky and d = nζi , for i = 0, 1, 2, 3, 4, then the overall cost of the algorithm

is O(nωi). For in-between values of d, we need to interpolate, using the following bound,
which is derived in the earlier studies (see, e.g., Huang and Pan [12]), and which asserts that,
for a ≤ r ≤ b, we have

ωr ≤
(b− r)ωa + (r − a)ωb

b− a
. (1)

O. Gold and M. Sharir 1:11

ζmin ζmax u v

0.687 0.87 0.909 1.75
0.87 0.963 0.921 1.739
0.963 1.056 0.931 1.73

Table 2 The time bound for computing dominance product for n points in dimension nζmin ≤
d ≤ nζmax is O (dunv).

That is, given d = nζ , where ζi ≤ ζ ≤ ζi+1, for some i ∈ {0, 1, 2, 3}, the cost of the algorithm
will be O (nωr), where r satisfies

ζ = ζr = ωr + r

2 − 1.

Substituting the bound for ωr from (1), with a = ri and b = ri+1, we have

(ri+1 − r)ωi + (r − ri)ωi+1
ri+1 − ri

+ r = 2(ζ + 1).

Eliminating r, we get

r = 2(ζ + 1)(ri+1 − ri)− ri+1wi + riwi+1
wi+1 + ri+1 − wi − ri

, (2)

and the cost of the algorithm will be O (nωr), where

ωr ≤
(ri+1 − r)ωi + (r − ri)ωi+1

ri+1 − ri
. (3)

Note that r is a linear function of ζ, and so is ωr. Writing ωr = uζ + v, the cost is

O (nωr) = O
(
nuζ+v

)
= O (dunv) .

The values of u and v for each of our intervals are given in Table 2. (The first row covers
the two intervals 1.0 ≤ r ≤ 1.1 and 1.1 ≤ r ≤ 1.2, as the bounds happen to coincide there.)
See also (??) in Section 1.2. We have provided explicit expressions for DP (n, d) only for
d ≤ nζ4 = n1.056, which includes the range d ≤ n, which is the range one expects in practice.
Nevertheless, the recipe that we provide can also be applied to larger values of d, using
larger entries from Le Gall’s table [15, 16]. Dropping constant factors, we denote the time
bound for computing the dominance product of n points in Rd by DP (n, d); see Theorem 4
in Section 1.2. by plugging the corresponding values of 0.302 < r < 1 from Le Gall’s Table 1
in [16]. We also note that, for d = n, the time bound is O(n2.6598), which improves Yuster’s
O(n2.684) time bound mentioned above.

References
1 Nir Ailon and Bernard Chazelle. The fast Johnson-Lindenstrauss transform and approxim-

ate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009.
2 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.
3 Michael Ben-Or. Lower bounds for algebraic computation trees. In Proc. of the 15th Annu.

ACM Sympos. on Theory of Computing (STOC), pages 80–86, 1983.

1:12 Dominance Product and High-Dimensional Closest Pair under L∞

4 Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229,
1980.

5 Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in multidimensional space.
In Proc. of the 8th Annu. ACM Sympos. on Theory of Computing (STOC), pages 220–230,
1976.

6 T. M. Chan. Geometric applications of a randomized optimization technique. Discrete &
Computational Geometry, 22(4):547–567, 1999.

7 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proc. of the 27th Annu. ACM-SIAM Sym-
pos. on Discrete Algorithms (SODA), pages 1246–1255, 2016.

8 Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and
bottleneck shortest paths. In Proc. of the 20th Annu. ACM-SIAM Sympos. on Discrete
Algorithms (SODA), pages 384–391, 2009.

9 Steve Fortune and John Hopcroft. A note on Rabin’s nearest-neighbor algorithm. Inform.
Process. Lett., 8(1):20–23, 1979.

10 Greg N. Frederickson and Donald B. Johnson. The complexity of selection and ranking
in x + y and matrices with sorted columns. Journal of Computer and System Sciences,
24(2):197 – 208, 1982.

11 M. L. Fredman. How good is the information theory bound in sorting? Theoret. Comput.
Sci, 1(4):355–361, 1976.

12 Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and applications.
J. Complexity, 14(2):257–299, 1998.

13 Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat. Closest pair problems in
very high dimensions. In Proc. 31st International Colloquium on Automata, Languages
and Programming (ICALP), pages 782–792, 2004.

14 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th Interna-
tional Sympos. on Symbolic and Algebraic Computation (ISSAC), pages 296–303, 2014.

15 François Le Gall. Faster algorithms for rectangular matrix multiplication. In Proc. 53rd
Annu. IEEE Sympos. on Foundations of Computer Science (FOCS), pages 514–523, 2012.

16 François Le Gall. Faster algorithms for rectangular matrix multiplication. CoRR,
abs/1204.1111, 2012.

17 Jiří Matoušek. Computing dominances in En. Inform. Process. Lett., 38(5):277–278, 1991.
18 Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag New York, NY, 1985.
19 Michael Rabin. Probabilistic algorithms. In Algorithms and Complexity, Recent Results

and New Directions, Academic Press, pages 21–39, 1976.
20 Michael Ian Shamos. Geometric complexity. In Proc. of 7th Annu. ACM Sympos. on Theory

of Computing (STOC), pages 224–233, 1975.
21 Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All pairs bottleneck paths and

max-min matrix products in truly subcubic time. Theory of Computing, 5(1):173–189,
2009.

22 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proc. 44th Sympos. on Theory of Computing (STOC), pages 887–898, 2012.

23 Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted
APSP. In Proc. 20th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages
950–957, 2009.

24 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplica-
tion. J. ACM, 49(3):289–317, 2002.

	Introduction
	Preliminaries
	Our Results

	L Closest Pair
	Solving the Optimization Problem

	L Closest Pair with Integer Coordinates
	Dominance Products
	Generalized and Improved Bounds

